Mapping LOM to the Dublin Core Abstract Model
– an alternative to the LOM RDF binding

Mikael Nilsson
mini@nada.kth.se

The Knowledge Management Research Group
Centre for user oriented IT design
Royal Institute of Technology, Stockholm

http://kmr.nada.kth.se
Background

- LOM elements not usable in combination with DCMI elements (e.g. Dublin Core APs)
- RDF has been the only way to combine LOM and DC
- First LOM/RDF draft September 2002
- Suffers from incompatibilities between LOM and RDF
- March 2005: Dublin Core Abstract Model

=> New possibilities for interoperability!
Dublin Core Abstract Model

- DCMI recommendation in March 2005
- Specifies the relationship between properties, values, encoding schemes etc.
- High level of compatibility with the RDF model
- Used by bindings (XML, RDF, XHTML)
- DCMI terms are instances of the concepts in the DCAM
- DCAPs are based on the concepts in the DCAM
LOM RDF binding

- Conceptually, the binding maps LOM to RDF in three steps:
  1. Transforms LOM into an Entity-Relationship model
  2. Defines URIs for entities and relations
  3. Expresses this model in RDF
- Step 1 & 2 essentially creates a DCAM mapping of LOM
- Step 3 very similar to the DC RDF binding

=> Make this split explicit!
Current structure

LOM data model

LOM metadata

LOM XML instance

LOM RDF instance

DC Abstract Model

DC metadata

DC RDF instance

DC XML instance

Combined RDF description
Proposal: Create LOM => DCAM adaptation

- Recommendation for using LOM metadata in Dublin Core descriptions
- A mapping “LOM elements” => “instances of DCAM concepts”
- Not a binding, but a translation (lossy in part)
- All constructs are used: properties, value strings, value URIs, [vocabulary|syntax] encoding schemes, related descriptions, except rich representations
Proposed structure

LOM data model

conforms to

LOM metadata

LOM XML instance

LOM DCAM translation

DC Abstract Model

conforms to

DC metadata

Combined DCAM description

DC RDF instance

DC XML instance
Example

- LOM XML:

```xml
<lifecycle>
  <version>
    <string language="en">1.0</string>
  </version>
</lifecycle>
```

- Corresponding DCAM:

  Statement:
  PropertyURI: lom:version
  VocabularyEncSchURI: lom:Version
  Value String: “1.0”
  Language: “en”
More complex example (LOM)

```xml
<lifecycle>
  <contribute>
    <role>
      <source>LOMv1.0</source>
      <value>author</value>
    </role>
    <date>
      <dateTime>2002-04-05</dateTime>
    </date>
  </contribute>
</lifecycle>
```
More complex DCAM example

Description set

Description 1

My LO

lom:contribute

Value: Resource "C"
Voc. Enc. Scheme: lom:Contribute

Description 2

C

lom:role

Value URI: lom:Author
Voc. Enc. Scheme: lom:Role
Value String: "author"
SyntaxEncScheme: LOMv1.0

dc:date

Voc. Enc. Scheme: lom:DateTime
Value String: "2002-04-05"
SyntaxEncScheme: dcterms:W3CDTF
Consequences for LOM

- LOM elements **reusable in DCAPs**
- LOM may be viewed as a **basic DCAP**
- **RDF binding** of LOM for free
- First step towards **better alignment of abstract models**.
- **Most work already done** within LOM RDF binding
- Separates LOM=>DC translation from the specific RDF binding.
DC and RDF abstract models

- Both DC and RDF use a resource – property – value model

- DC has more high-level “values” than RDF
  - value URIs
  - value strings
  - rich values, etc.

- The LOM RDF binding uses the RDF model (of course)

- It also tries to be compatible with the DC model.
Discussion

• Not two-way: No general way back to LOM
• Who owns it? DCMI or IEEE? Both?
• Two-step process to get from LOM to RDF
• Needs new PAR, replaces LOM RDF
• Collaboration with DCMI experts
Proposal: Joint DCMI-LTSC taskforce

- The taskforce will produce a joint DCMI/IEEE specification with the working title: “Recommendation for using IEEE LOM Elements in Dublin Core Metadata”
- Members of both DC-Education and IEEE LTSC will participate.
- Interact with the DCMI through the DC Education working group.
- Interact with the LTSC through an IEEE LTSC working group.
- Membership in IEEE LTSC will not be mandatory, and the mailing list/web site will be open to anyone.
- Lead: Mikael Nilsson, Jon Mason
- The initial technical editors: Mikael Nilsson, Andy Powell, Pete Johnston
• The intention is to publish the recommendation as both an IEEE “Recommended Practice” and a DCMI “Recommendation”.
  
  - Consensus within both IEEE LTSC community and the DCMI community
  
  - Both communities will be able to contribute to the production of a draft recommendation
  
  - Both communities will be able to participate in the commenting/balloting process
  
  - Comments from both communities will be shared between the communities
  
  - Comments from both communities will be considered and resolved by the taskforce.
  
  - The DCMI and the IEEE LTSC will each have the right to veto the final publication of the joint standard. Thus, if one of the organizations do not agree to the publication of the standards, the publication will be stopped in the other organization.
Roadmap

- Get approval from LTSC that we want to take this path to LOM/DC interoperability
- Kill 1484.12.4 (the LOM RDF binding)
- Start LTSC study group with the given Scope & Purpose as input.
- Setup necessary links on the LTSC site.
- Submit a PAR for a 1484.12.5 (?) IEEE Recommendation or similar
- Maybe more
Status

• Written first version of “Agreement”
  – Accepted by DCMI Advisory board at DC2005
• Wiki, Mailing list setup
• Needed now:
  – Acceptance from LTSC [SEC?]
  – New study group in LTSC [SEC?]
  – Kill 1484.12.4 [SEC?]
  – Add links to IEEE LTSC site [Me...]
Comments???
Metadata Interoperability Issues

• LOM elements \textit{not usable in combination} with DCMI elements (e.g. Dublin Core Aps)

• The concept of “element” differ substantially between the two standards

• Surface interoperability:
  – XML namespaces
  – RDF

• ...but the interpretation of these expressions differ
Interpreting metadata

![Diagram showing the flow of information between Application A and Application B through DC abstract model and DC XML binding.]
Combining XML fragments
Combining RDF fragments
Interpreting XML and RDF metadata

<table>
<thead>
<tr>
<th>Format</th>
<th>Extended with fragment from</th>
<th>Processable by LOM application</th>
<th>Processable by Dublin Core application</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOM XML</td>
<td>Dublin Core XML</td>
<td>Only LOM part</td>
<td>None</td>
</tr>
<tr>
<td>Dublin Core XML</td>
<td>LOM XML</td>
<td>None</td>
<td>Only Dublin Core part</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
<th>Processable by LOM application</th>
<th>Processable by Dublin Core application</th>
<th>Processable by RDF application</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOM+Dublin Core RDF</td>
<td>Only LOM part</td>
<td>Dublin Core part + most of LOM part</td>
<td>Dublin Core part + LOM part</td>
</tr>
</tbody>
</table>
Requirements

- The components must be **unambiguously identified**.
- The components must adhere to **compatible abstract models**.
- A **metadata format** must be used that allows for **consistent interpretation** of the components with respect to their respective abstract models.
An Interoperability Framework for Metadata Standards

Metadata formats
- XML, RDF, XHTML, etc.

Metadata vocabularies
- Abstract Model
  - Schema model
  - Profile Model

Application profiles
- Abstract Framework
  - expressed in
  - references

LOM Data Model
- LOM AP
- EdNA
  - Reuse
- DC
  - Refinements
  - LOM
  - IMS
- UK LOM Core