An Introduction to Dublin Core

Diane I. Hillmann
National Science Digital Library
DC2004 Tutorial, 11 October 2004
What is Metadata?

• Answers come from three traditions:
 – Database Management Systems (“Schemas of relational databases”)
 – Library Cataloging Traditions (MARC & AACR2)
 – The World Wide Web (since the mid-1990’s)
 • The context for Dublin Core
Types of Metadata

- Administrative
- Descriptive
- Access/Use
- Preservation
- Technical/Structural
- Other?
Comparing Libraries & the Web

• Library tradition:
 – More than 100 years of experience, from catalog cards to MARC
 – MARC Records include:
 • Description (all objects)
 • Subjects and classification (topical context)
 • Holdings information (location)
 • Administrative information required to manage records
 – Distributed metadata creation based on common consensus on standards
The Web: One distributed Library?

• The situation in the mid-1990s:
 – Thousands of information providers, using a variety of metadata schemas (if anything at all)
 – Search engines providing too many hits and very little precision
 – Volatile resources changing addresses, disappearing, etc.
 – Exponential growth in numbers and types of resources available
Fifteen Core Elements (1996)

- Creator
- Contributor
- Publisher
- Coverage
- Source
- Title
- Date
- Type
- Rights
- Language
- Subject
- Description
- Format
- Relation
- Identifier

D. Hillmann, Slide 6
DC 2004, Shanghai, October 2004
Functions of Metadata

- Discover resources
- Manage documents
- Control IP Rights
- Identify versions
- Certify authenticity
- Indicate status
- Mark content structure
- Situate geospatially
- Describe processes
Characteristics of the Dublin Core

- All elements optional
- All elements repeatable
- Elements may be displayed in any order
- Extensible
- International in scope
Moving Towards a Data Model

- Collective realization that machine-processability requires a coherent data model
- 1996: “Warwick Framework” proposed at DC-2 workshop: DC as one specialized module (“resource discovery”) among many
- 1997: “Qualifiers” proposed for specifying meanings
 - Some early adopters take this to unintended extremes: “DC.Creator.telephone-number”
- 1998: DCMI involvement in emerging Resource Description Framework and clarification of simple data model for Dublin Core
- 2000: First set of qualifiers officially approved
DC Data Model Work-in-Progress

• Provides explicit definitions of resources
• Relates DC principles and practices to the developments outside DCMI
• Makes clear the relationship of DC “packages” of information to other metadata “packages”
• Paves the way for future progress for DCMI
Dublin Core Principles

- Dumb-Down
- One-to-One
- Appropriate Values
Dumb-Down

- The fifteen core elements are usable with or without qualifiers
- Qualifiers make elements more specific:
 - Element Refinements narrow meanings, never extend
 - Encoding Schemes give context to element values
- If your software encounters an unfamiliar qualifier, look it up – or just ignore it!
The One-to-One Principle

• Describe one manifestation of a resource with one record
 – Ex.: a digital image of the Mona Lisa is not described as if it were the same as the original painting

• Separate descriptions of resources from descriptions of the agents responsible for those resources
 – Ex.: email addresses and affiliations of creators are attributes of the creator, not the resource
Appropriate Values

“Best practice for a particular element or qualifier may vary by context, but in general an implementor cannot always predict that the interpreter of the metadata will always be a machine. This may impose certain constraints on how metadata is constructed, but the requirement of usefulness for discovery should be kept in mind.”

-- from “Using Dublin Core”
Simple or Qualified Dublin Core?

• Simple Dublin Core is limited to the original 15 elements

• Qualified Dublin Core includes, in addition:
 – New Elements
 – Element Refinements
 – Value Encoding Schemes
Element Refinements

- Make element meanings narrower, more specific:
 - a Date Created versus Date Modified
 - an IsReplacedBy versus Replaces Relation

- Depending on syntax chosen, refinements may appear as stand-alone tags instead of with elements:
 - `<dct:created>2002-10-04</dct:created>`, instead of:
 - `<dc:date><dct:created>2002-10-04</dct:created></dc:date>`
 - Requires a schema to dumb-down Date Created to Date
 - Dublin Core is simple enough to support both usages
Value Encoding Schemes

- Indicate that the value is:
 - a term from a controlled vocabulary (e.g., Library of Congress Subject Headings)
 - a string formatted in a standard way (e.g., that "05/02" means May 2nd, not February 5th)
- Even if a scheme is not known by software, the value should be "appropriate" and usable for resource discovery.
Dublin Core Grows and Changes

- DCMI Community emphasizes open participation
 - Conferences, working groups, discussion lists
- DCMI term set evolves as implementers coin new terms and usage patterns emerge
- DCMI Usage Board reviews proposals for new metadata terms
Dublin Core Usage Board

• Usage Board receives proposals for new elements, refinements, encoding schemes, Type terms
 – Evaluates proposals in light of grammatical principle, usefulness, clarity of definition, overlap with existing terms
• Tiered model of approval status: conforming, recommended, obsolete, registered
DCMI Namespaces and Policies

• All DCMI metadata terms are given unique identity within three namespaces:
 – http://purl.org/dc/elements/1.1/ - the legacy DC-15
 – http://purl.org/dc/terms/ - all other elements/qualifiers
 – http://purl.org/dc/dcmitype/ - a Type vocabulary
 – Example: http://purl.org/dc/elements/1.1/title

• Policies promote long-term stability of namespace URIs
 – Changes not substantially “semantic” (i.e., corrections) will not result in change of namespace URIs
Application Profiles & Interoperability

• Implementers want to know how their peers design metadata – to avoid "reinventing the wheel"

• Information providers need to harmonize metadata usage for improved access within domains, e.g.:
 – Between countries (Nordic Metadata Project)
 – Preprint repositories (Open Archives Initiative)
 – Subject gateways (Renardus)
 – Mathematics and physics (MathNet, PhysNet)
Encoding Metadata Records

• Mid-1990s: HTML tags embedded in Web pages
 – Simple, easy to deploy, but inflexible, hard to maintain
 – Bad tags like DC.Creator.eyecolor imply a non-existent support for nesting and for entity distinctions

• 2000+: Better XML/RDF alternatives
 – RDF metadata supports complex structures without breaking simple DC grammar
 – Open Archives Initiative promotes mass adoption of an XML schema for simple, unqualified Dublin Core records – along with a protocol to make them available
The World of Metadata Harvesting

- **Service Providers** harvest and integrate metadata from diverse **Content Providers**
 - Presupposes standard element sets, record formats, and harvesting methods
- **1999+**: Open Archives Initiative began as a federation of scholarly pre-print providers
 - Today: aggregations using OAI-PMH creating new models of metadata services
Why the Harvesting Model Works

• Exposing metadata facilitates:
 – Reuse of available metadata
 – The creation of value-added services

• Low entry cost is key to deployable digital library infrastructure
 – New Static Repositories version of OAI lowers entry bar even more

• Individual communities have begun to customize the common infrastructure
 – Branching out from Simple DC minimum
Example: National Science Digital Library (USA)

- Principle: “Metadata is too expensive to create much. Use existing metadata when possible.”
- Early strategy:
 - Support standard formats, base Metadata Repository on Qualified Dublin Core
 - Collect DC and native metadata (when possible)
 - Assemble all metadata in a central repository
 - Expose all such records to harvesters
 - Focus limited human effort on metadata for collections
 - Generate metadata automatically when possible
Nematodes

Title

- Plant nematodes the grower should know
- The evolutionary position of nematodes
- Biodiversity of nematode assemblages from the region of the Clayon-Clipperton Fracture Zone
- Analysis and functional classification of transcripts from the nematode Meloidogyne incognita
- The Effect of Nematode Isolate and Soil Environment on the Tobacco cyst Nematode (Globodera tabacum solanacearum), a Pathogen of Flue-cured Tobacco and Other Solanaceous Crops

Resource Format

- [text]
- [text]

Found in Collection

- NSDL
- Biomed Central
- Biomed Central
- Virginia Tech ETD

Description

- This web page presents four videos of nematodes that show their twisting movement. These videos are from a collection of digital movies of microscopic organisms taken at a typical North Florida pond. They were taken under darkfield illumination at magnifications 100X and 200X. Users may access these videos, ranging from 21.1 seconds to 45.4 seconds, by using a playback format at the following connection speeds: 28.8k (modem), 56.6k (modem), or T1/Cable/DSL; or downloading the video clip in .AVI format. (Author/LSR) Copyright 2003 Eisenhower National Clearinghouse (ENC).

Publisher

Florida State University

Contributor

Michael W Davidson

Date

2003

Format

text/html

Identifier

http://micro.magnet.fsu.edu/moviegallery/pondscum/nematode/index.html

Language

en

Rights

Copyright 1995-2002, by Michael W. Davidson and The Florida State University. All Rights Reserved.
NSDL Forges Ahead

- Develops methodology for evaluating metadata quality
 - “Metadata must play well together”
- Builds techniques for normalization that work with large quantities of diverse data
- Moving beyond managing metadata records to managing “descriptive statements about resources”
Steps toward the Semantic Web

• Simple linked data model
 – a Web link means “has something to do with”
 – Formalized since 1997 as Resource Description Framework (RDF)

• XML: universal data exchange format

• URIs: everything has a unique address
 – Both resources and the metadata terms used to describe them
 – XML namespaces: unique identifiers for metadata vocabulary terms
 – URIs as anchors for data merging
Finding Out More about DC

• DCMI Web Site
 – http://dublincore.org

• “Using Dublin Core”
 – http://dublincore.org/documents/usageguide/

• Participating in a Working Group
 – http://dublincore.org/groups

• Ask a question!
 – http://askdcmi.askvrd.org/
Questions?

Thank you for your attention!

Diane I. Hillmann
Director of Library Services and Operations, NSDL
Member, DCMI Usage Board, Advisory Board
Editor, “Using Dublin Core”
Administrator, AskDCMI
DIH1@cornell.edu (fourth character is “one”)